15.482 Healthcare Finance Spring 2017/62 Andrew W. Lo, I

Unit 9, Part 4: Bayesian Decision Analysis for Randomized Clinical Trials

Unit Outline

- Risk and Return in the Biopharma Industries, 1930-2015
- Estimating Clinical Success Rates
- Predicting Phase Transitions and Approvals
- Patient-Centered Clinical Trials

15.482

Patient-Centered Randomized Clinical Trials in Oncology via Bayesian Decision Analysis

Vahid Montazerhodjat, Shomesh E. Chaudhuri, Daniel J. Sargent, Andrew W. Lo

© 2017 by Andrew W. Lo All Rights Reserved

Statistical Inference Involves Trade-offs

	Approve	Reject
Effective Therapy	\checkmark	Type II error
Ineffective Therapy	Type I error	\checkmark

- Standard approach sets Type I error = 5%; why?
- What if patients prefer higher Type I error in exchange for smaller Type II error?

Statistical Inference Involves Trade-offs



Statistical Inference Involves Trade-offs

15.482

Guidance for Industry & FDA Staff (2012)

"FDA recognizes that patient tolerance for risk and a patient-centric assessment of risk may reveal reasonable patients who are willing to tolerate a very high level of risk to achieve a probable benefit, especially if that benefit results in an improvement in quality of life."

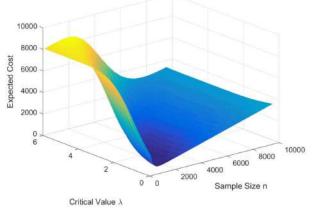
21st Century Cures, Sec. 3002. "Patient-Focused Drug Development Guidance."

"How the FDA plans to use relevant patient experience data and related information when evaluating the risks and benefits of a drug. **Bayesian Decision Analysis**

$$\underset{p,n}{\operatorname{Min}} \operatorname{E}[\operatorname{Cost}] = \underset{p,n}{\operatorname{Min}} \left(\operatorname{E}[\operatorname{Cost}|\mathcal{H}_0]p_0 + \operatorname{E}[\operatorname{Cost}|\mathcal{H}_1](1-p_0) \right)$$

$$E[\text{Cost}] = c_1 p_o \left[N\Phi(-\lambda_n) + N\xi \Phi\left(\lambda_n - \delta_o \sqrt{\mathcal{I}_n}\right) + n(1 + \gamma N\xi) \right]$$
$$\xi \equiv \frac{c_2}{c_1} \frac{1 - p_0}{p_0}$$

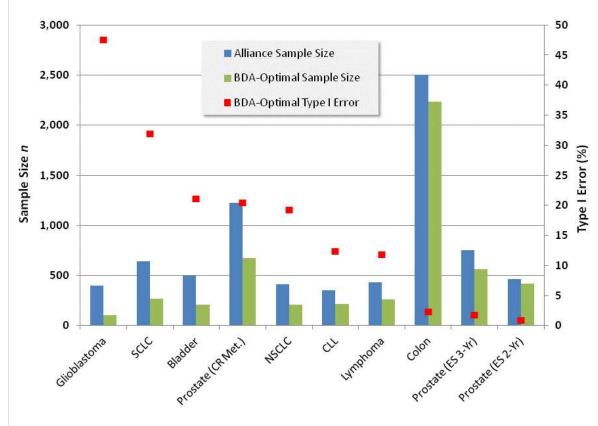
 BDA-optimal decision minimizes expected cost



© 2017 by Andrew W. Lo All Rights Reserved

15.482

Bayesian Decision Analysis



All Rights Reserved

Bayesian Decision Analysis

No.	Cancer site	Primary endpoint	Control group outcome	Stage prevalence	Sample size	One- sided α (%)	Power (%)	BDA sample size	BDA one- sided α (%)	BDA power (%)
1	Glioblastoma	OS	Median 21 months	25,299	400	5.0	90	104	47.5	90
4	Prostate (CR Met.)	OS	Median 35 months	111,824	1,224	2.5	90	676	20.4	90
5	NSCLC	OS	Median 5 years	64,769	410	2.5	85	210	19.2	90
7	Lymphoma	EFS	Median 42 months	164,888	430	2.5	90	264	11.8	90
8	Colon	DFS	3-year DFS rate of 72%	319,118	2,500	2.5	91	2,232	2.3	90
9	Prostate (ES 3-Yr)	PFS	3-year PFS rate of 57.7%	2,236,474	750	2.5	89	560	1.8	90

Qualifications

- Not fully Bayesian ("feature" or "bug"??)
- How to choose parameters?
- Whose preferences should be reflected?
- Potential backlash from toxicities and side effects?
- Ethical considerations

But these issues already exist for current methods; BDA provides a more systematic framework for addressing them

Conclusion

- Technology is transforming many fields and industries
- Cheap storage, big data, and machine learning have created new approaches to decision making
- Machine-learning techniques show promising levels of predictive power, able to discriminate between high- and low-potential therapeutic candidates
- Possibility of more powerful prediction models with better quality data and more scientific judgment
- Implications for translational medicine, biopharma investments, and regulatory science