15.482 Healthcare Finance Spring 2017 & Andrew W. Lo Mit

Unit 9, Part 3: Predictive Analytics for Drug Approvals and Clinical Phase Transitions

Unit Outline

- Risk and Return in the Biopharma Industries, 1930-2015
- Estimating Clinical Success Rates
- Predicting Phase Transitions and Approvals
- Patient-Centered Clinical Trials

Predictive Analytics for Drug Approvals and Clinical-Phase Transitions

Kien Wei Siah, Chi Heem Wong, Andrew W. Lo (2017)

Unit 9 - Part 3

© 2017 by Andrew W. Lo All Rights Reserved

What Is BigData?

- A consequence of cheap computing and storage
- Massively large datasets contain novel insights
- First application: supermarket UPC barcodes

- Other applications include healthcare, marketing, supply chain management, etc.
- Economics and finance have been slow to adopt

The Target Story

The New York Times February 18, 2012 February 18, 2012 FUNCTION COMPARISES LEARN YOUR SECRETS By CHARLES DUHIGG Andrew Pole had just started working as a statistician for Target in 2002, when two colleagues from the marketing department stopped by his desk to ask an odd question: "If we wanted to figure out if a customer is pregnant, even if she didn't want us to know, can you do that?"

- Consider a 23-year-old women who buys:
 - Cocoa-butter lotion, large purse, zinc and magnesium supplements, bright blue rug
- 87% she's pregnant and due in five months
- Increased probability if this pattern is new
- Send her coupons for diapers, baby clothes, etc.

Anonymized Data from Large U.S. Commercial Bank

Transaction Data

By Category

Transaction Count Total Inflow Total Outflow

By Channel:

ACH (Count, Inflow and Outflow) ATM (Count, Inflow and Outflow) BPY (Count, Inflow and Outflow) CC (Count, Inflow and Outflow) DC (Count, Inflow and Outflow) INT (Count, Inflow and Outflow) WIR (Count, Inflow and Outflow) Mortgage payment Credit car payment Auto loan payment Student loan payment All other types of loan payment Other line of credit payments Brokerage net flow Dividends net flow Utilities Payments TV Phone Internet Collection Agencies Hotel expenses Travel expenses Recreation (golf Department Stores Expenses Retail Stores Expenses Clothing expenses Discount Store Expenses Big Box Store Expenses Education Expenses Total Food Expenses Grocery Expenses Restaurant Expenses Unemployment Inflow

Bar Expenses Fast Food Expenses Total Rest/Bars/Fast-Food Healthcare related expenses Health insurance Gas stations expenses Vehicle expenses Car and other insurance Drug stores expenses Government Treasury (eg. tax refunds) Pension Inflow Collection Agencies

Balance Data

Checking Account Balance Brokerage Account Balance Saving Account Balance CD Account Balance IRA Account Balance

Credit Bureau Data

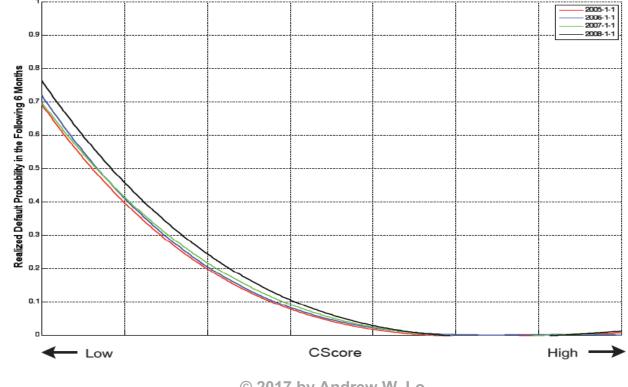
File Age Credit Score Open/Closed Flag & Date of Closure Bankruptcy (Date & Code) MSA & Zip Type (CC, MTG, AUT, etc) Age of Account Balance Limit if applicable Payment Status 48-Month Payment Status History

1% Sample = 10 Tb!

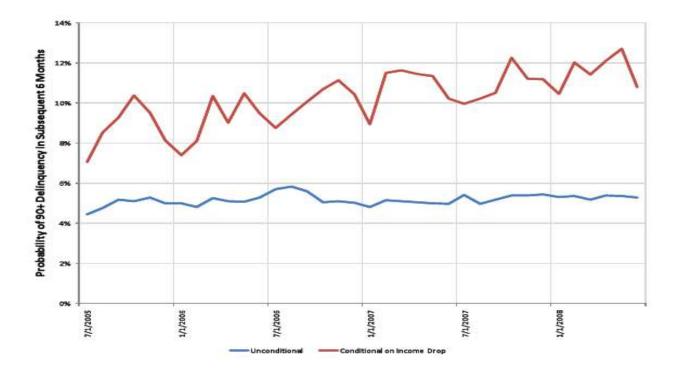
Unit 9 - Part 3

© 2017 by Andrew W. Lo All Rights Reserved

Standard Credit Scores Are Too Insensitive

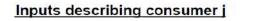


© 2017 by Andrew W. Lo All Rights Reserved



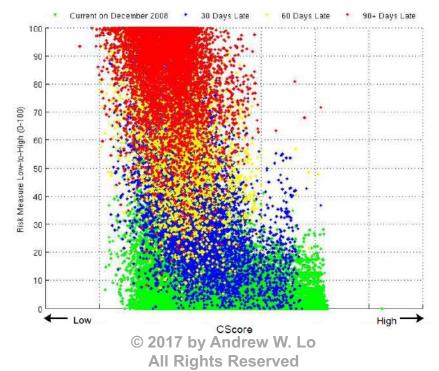
15.482

Big Data for Consumer Credit



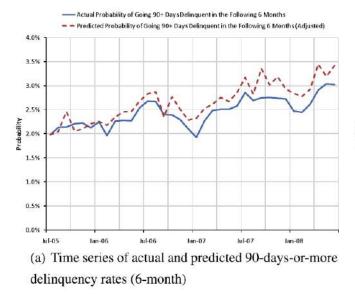


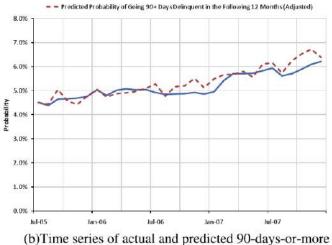
- Khandani, Kim, and Lo (2010)
- 600,000 credit cards per month; 40-hour runtime



Unit 9 - Part 3

Credit Forecasts Over Time





----- Actual Probability of Going 90+ Days Delinquent in the Following 12 Months

delinquency rates (12-month)

© 2017 by Andrew W. Lo All Rights Reserved

- 6 largest banks from Jan 2008 to Dec 2013
- Macro and institution-specific factors (137), 25 Tb of data
- Models varied greatly across institutions
- Used to gauge quality of risk management across institutions

Unit 9 - Part 3

© 2017 by Andrew W. Lo All Rights Reserved

Category	Attribute	Bank 1	Bank 2	Bank 3	Bank 4	Bank 5	Bank 6
Utilization	MonthUtilization1MoChange	6.2	6.5	1.5	4.5	4.9	5.3
Utilization	CycleUtilization1MoChange	1.8		5.4		1.4	1.6
Utilization	MonthUtilization					1.0	
Utilization	MonthUtilization3MoChange		2.5				0.0
Utilization	CycleUtilization						1.3
Utilization	Dum1lfTotBal_TotLmtAllOpenBankCardAcctsEQ0			0.1			
delinquency Status	Dum1lfGT0Acct60DPD	5.6	2.3	4.8	5.2	0.8	3.4
Delinquency Status	DaysPastDue	5.4	5.7		5.5	3.8	2.2
Delinquency Status	Dum1lfGT0Acct90DPD	4.2	4.5	4.4	3.2		1.4
Delinquency Status	NumOfAcc60DPD	4.1	2.8	2.5	4.3	0.2	-0.6
Delinquency Status	Dum1lfGT0Acct30DPD	3.8	4.3		2.4		1.5
Delinquency Status	NumAccts30DPD	3.0	2.6		2.4		
Delinquency Status	NumOfAcc90DPD	2.4		2.9	1.8		
Delinquency Status	TotNumAcc60DaysPastDue12MoVerif			-0.1		-0.7	
Delinquency Status	TotNumOpenBankCard60DPD12MoVer					-0.2	
Delinquency Status	Dum1lfGT0BankCardAcct60DPD12MoVer		2.9	-0.5		0.2	
Borrower Payment behavior	ActualPmtAmt_TotPmtDue	5.0	4.0	3.8	4.9	2.0	0.6
Borrower Payment behavior	PaymentEqDueLast3MoFlag	3.9	1.7	3.3	2.3	0.7	-0.8
CardCharacteristics	CurrentCreditLimit	2.4			3.9	0.1	0.8
CardCharacteristics	MonthEndBalance	2.2	2.6	0.1		-0.6	1.7
CardCharacteristics	ProductType	1.8					
CardCharacteristics	CycleEndBalance			0.3	6.5	0.9	2.2
CardCharacteristics	TotNumberOfAccounts			-0.5			
CardCharacteristics	TotNumberGoodAccounts		3.1		2.9		
CardCharacteristics	TotNonMortgBalAllAcc12MoVerif						-0.6
CardCharacteristics	MaxTotAmt60DPDAllAcctsOrTotBalOpenBankCards60DPD		5.7			1.5	
CardCharacteristics	TotCredLmtBankCardAccts			-0.2			
CardCharacteristics	Dum1lfTotCredImtAllRvlvgAcctsGT012MoVer		2.3	-0.2			
CardCharacteristics	CreditCardType				3.8		
BorrowerCharacteristics	3MoChangeRefreshedFICO	3.5		-0.4			
BorrowerCharacteristics	BehevScore	2.3	3.1	0.7	4.6	1.9	2.9
BorrowerCharacteristics	RefreshedFICO	1.9	1.6		1.7	0.4	1.9
BorrowerCharacteristics	6MoChangeBehevScore						-0.9
AccountStatus	chg1Mo_LineFrozenFlag_0	2.4			1.5	1.8	
AccountStatus	LineFrozenFlag	2.4	1.5				
AccountStatus	LineDecreaseFlag				3.5		
AccountStatus	TotalPaymentDue				2.1	-0.4	2.0
AccountStatus	OverLimitLast3MoFlag					0.4	
Macro	MACROd3hrs_wkly_private	1.5	2.9	0.6	2.7		
Macro	MACROd3num_total_private_nsa		2.5				
Macro	MACROI12hrs_wkly_leisure						0.0
Macro	MACROd12index_sa			-0.3			

Informa[®] Databases

Pharmaprojects Database

- Tracks drug development pipelines (e.g. development status, route of administration, drug medium, pharmacological target family, ...)
- Detailed profiles on 101,507 drug-indication pairs

Drug	Indication	Status	Route of Administration	Medium	Pharmacological Target
Carperitide	Myocardial infarction	Launched	Injectable	???	Natriuretic peptide agonist
Levocetirizine	Perennial allergic rhinitis	Launched	Oral	Tablet, solution, hard capsule	Histamine receptor antagonist

Informa[®] Databases

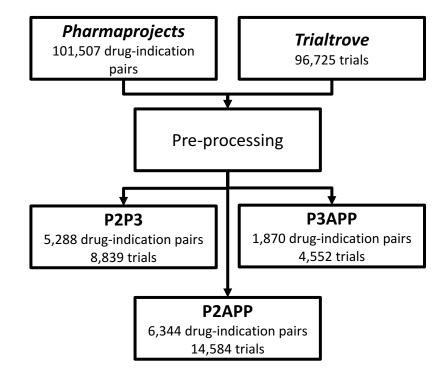
Trialtrove Database

- Tracks clinical trial information (e.g. status, sponsor, accrual, locations, start and end dates, outcomes)
- Aggregates information from nearly 40,000 sources (e.g. company press releases, government drug and trial databases, scientific conferences, ...)

Trial ID	Drug	Indication	Phase	Status	Actual Accrual	Locations	End Date	Sponsor Type	Outcome
75404	Carperitide	Myocardial infarction	2	Completed	124	Japan	9/1/2007	Academic	???
65284	Dirucotide	Multiple sclerosis	3	Terminated	580	Canada, Spain, Germany,	7/27/2009	Industry, top 20 pharma	Terminated, business decision – pipeline reprioritization

Develop predictive algorithms for assessing probability of success of drug candidates

- Phase 2 to phase 3 (P2P3)
- Phase 2 to approval (P2APP)
- Phase 3 to approval (P3APP)



Features

Drug Features

Route

Origin

Medium

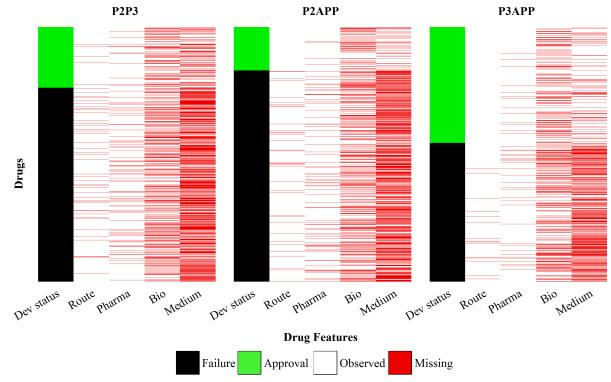
Biological target family

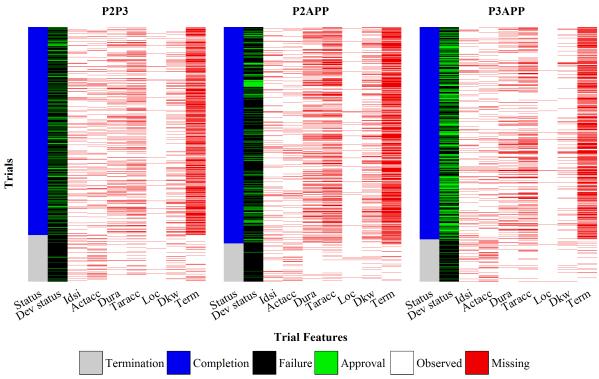
Pharmacological target family

Prior approval of drug for another indication

Drug-indication pair development status

Trial Features
Duration
Study design
Sponsor type
Therapeutic area
Trial status
Trial outcome
Target accrual
Actual accrual
Locations
Number of identified sites
Sponsor track record
Investigator experience





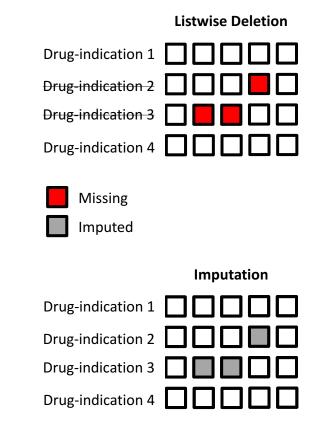
Imputation

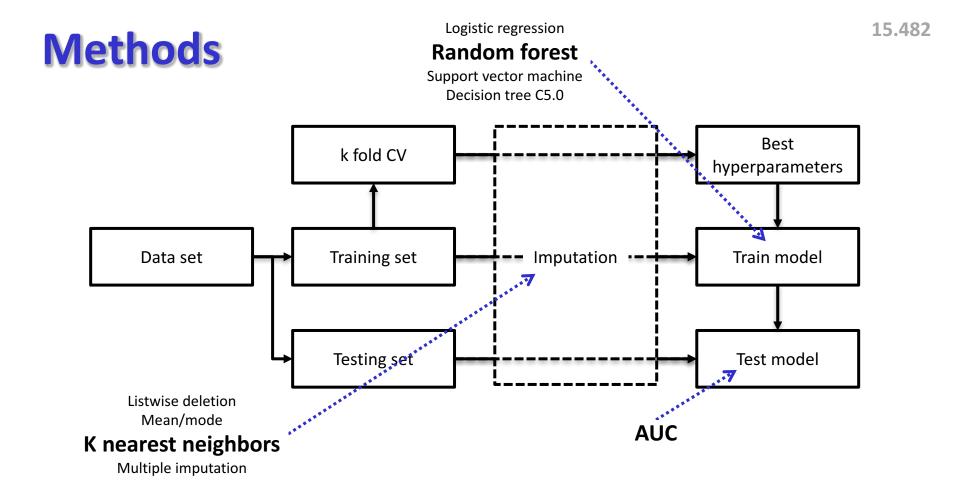
Most related studies do not report extent of missingness or use listwise deletion

- Simplest remedy
- Biased inferences

We impute missing values using observed data

Improvement over complete cases





Predicting Approvals

- Five nearest neighbors imputation
- Random forest classifier
- AUC as metric

	Avg AUC	Sd	5%	50%	95%
		P2P3			
All	0.737	0.018	0.707	0.741	0.764
Anti-cancer	0.745	0.028	0.700	0.745	0.788
Rare Diseases	0.752	0.041	0.685	0.755	0.818
Neurological	0.776	0.034	0.716	0.778	0.835
Alimentary	0.733	0.034	0.679	0.736	0.789
Immunological	0.715	0.067	0.604	0.723	0.826
Anti-infective	0.693	0.066	0.594	0.695	0.797
Respiratory	0.693	0.059	0.592	0.699	0.774
Musculoskeletal	0.766	0.055	0.668	0.768	0.853
Cardiovascular	0.677	0.066	0.565	0.677	0.780
Genitourinary	0.719	0.082	0.579	0.729	0.836

Predicting Approvals

- Five nearest neighbors imputation
- Random forest classifier
- AUC as metric

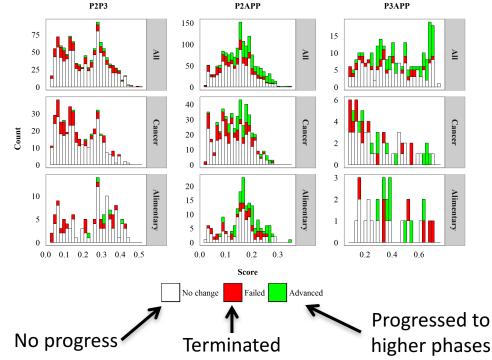
	Avg AUC	Sd	5%	50%	95%
		P2APP			
All	0.777	0.017	0.749	0.775	0.806
Anti-cancer	0.805	0.025	0.764	0.805	0.847
Rare Diseases	0.800	0.028	0.756	0.800	0.848
Neurological	0.767	0.036	0.710	0.769	0.819
Alimentary	0.749	0.045	0.672	0.751	0.817
Immunological	0.783	0.065	0.665	0.786	0.889
Anti-infective	0.735	0.043	0.673	0.736	0.800
Respiratory	0.756	0.055	0.648	0.764	0.835
Musculoskeletal	0.822	0.049	0.736	0.821	0.899
Cardiovascular	0.709	0.072	0.580	0.711	0.812
Genitourinary	0.633	0.086	0.503	0.634	0.790

Predicting Approvals

- Five nearest neighbors imputation
- Random forest classifier
- AUC as metric

	Avg AUC	Sd	5%	50%	95%
		РЗАРР			
All	0.810	0.018	0.781	0.810	0.834
Anti-cancer	0.783	0.047	0.699	0.779	0.853
Rare Diseases	0.819	0.054	0.727	0.822	0.896
Neurological	0.796	0.037	0.734	0.794	0.857
Alimentary	0.817	0.047	0.744	0.820	0.891
Immunological	0.811	0.074	0.680	0.815	0.910
Anti-infective	0.757	0.065	0.644	0.752	0.854
Respiratory	0.823	0.065	0.712	0.831	0.920
Musculoskeletal	0.741	0.095	0.576	0.747	0.866
Cardiovascular	0.794	0.058	0.702	0.788	0.887
Genitourinary	0.814	0.083	0.670	0.821	0.937

Distribution of Predictions for Pipeline Drug-Indication Pairs



Distribution of Predictions for Pipeline Drug-Indication Pairs

 Pairs that fail generally have lower scores than those that advance

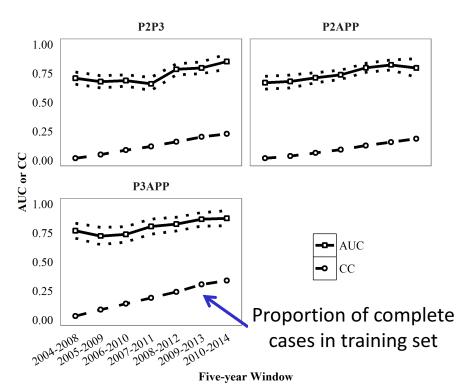
	n	Avg	Sd	5%	50%	95%	
P2P3							
Aggregate	1,105	0.209	0.109	0.054	0.211	0.387	
No change	858	0.211	0.108	0.054	0.216	0.388	
Failed	194	0.191	0.112	0.052	0.157	0.375	
Advanced	53	0.249	0.095	0.098	0.262	0.390	
			P2APP				
Aggregate	1,511	0.153	0.061	0.044	0.155	0.258	
No change	859	0.143	0.060	0.041	0.147	0.246	
Failed	244	0.137	0.061	0.034	0.147	0.240	
Advanced	408	0 183	0.056	0.093	0.178	0.274	
			РЗАРР				
Aggregate	252	0.417	0.189	0.128	0.402	0.695	
No change	142	0.392	0.185	0.129	0.384	0.693	
Failed	32	0.348	0.185	0.100	0.344	0.656	
Advanced	78	0.492	0.176	0.233	0.492	0.699	

Important Variables

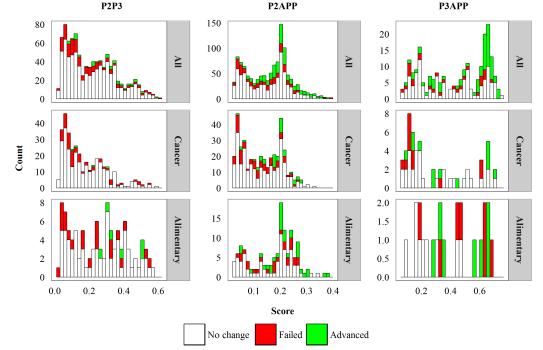
- Trial outcome (primary endpoints met)*
- Trial status (completed or terminated)*
- Prior approval of drug for another indication
- Trial characteristics (accrual, duration, ...)
- Sponsor track records (quantified by number of past successful trials)

Predictions Over Time

- Increasing trend over five-year rolling windows
- Proportion of complete cases in training sets correlate well with time series AUC (0.82-0.95)



Distribution of Predictions for Pipeline Drug-Indication Pairs (2011-2015)



Top Five P2APP Pipeline Drug Candidates with Highest Scores

 Candidates still outstanding at the time of writing (neither discontinued nor approved)

Group	Drug	Indication	Score
	ontecizumab	Cancer, colorectal	0.34
A	calmangafodipir	Radio/chemotherapy-induced injury, bone marrow, neutropenia	0.31
Anti-cancer	tivantinib	Cancer, sarcoma, soft tissue	0.30
	pidilizumab	Cancer, colorectal	0.29
	NK-012	Cancer, colorectal	0.28
	surotomycin	Infection, Clostridium difficile	0.34
	tivantinib	Cancer, sarcoma, soft tissue	0.30
Rare Diseases	VP-20621	Infection, Clostridium difficile prophylaxis	0.30
	KHK-7580	Secondary hyperparathyroidism	0.29
	nitric oxide, inhaled	Hypertension, pulmonary	0.29
	Dasotraline	Attention deficit hyperactivity disorder	0.35
	Idalopirdine	Alzheimer's disease	0.35
Neurological	GRC-17536	Neuropathy, diabetic	0.34
	caprylic triglyceride	Alzheimer's disease	0.32
	levodopa	Parkinson's disease	0.31

Discussion

- Large datasets from *Pharmaprojects* and *Trialtrove*
- Imputation and machine-learning approach for analysis
- Classifiers with promising levels of predictive power, able to discriminate between high- and low-potential candidates
- Insights into important variables not considered in prior studies
- Possibility of more powerful prediction models with better quality data