15.482 Healthcare Finance Spring 2017

Andrew W. Lo. Mir

Unit 6, Part 2: Statistical Framework for Clinical Trials

Unit Outline

- Overview of the Drug Development Process
- Randomized Clinical Trial Design
- Size, Power, and Cost
- Formal Statistical Analysis

Size, Power, and Cost

Consider Drug That Has Quantifiable Range of Impact

$$T_i \stackrel{\text{IID}}{\sim} \mathcal{N}(\mu_t, \sigma^2) , X_i \stackrel{\text{IID}}{\sim} \mathcal{N}(\mu_x, \sigma^2) , i = 1, \dots, n$$

- Null hypothesis H_0 : $\delta = \mu_t \mu_x = 0$ (no effect)
- Alternative hypothesis H_1 : $\delta > 0$ (positive effect)
- How to decide between H₀ and H₁?

$$\hat{\delta} \equiv \hat{\mu}_t - \hat{\mu}_x = \frac{1}{n} \sum_{i=1}^n T_i - \frac{1}{n} \sum_{i=1}^n X_i$$

Is this difference statistically significant?

Consider Drug That Has Quantifiable Range of Impact

- $\hat{\delta}$ is a random variable; we need its distribution to determine whether data is consistent with null or alternative
- $Z_n \equiv (\hat{\delta} E[\hat{\delta}]) / SD[\hat{\delta}] = \hat{\delta} / SD[\hat{\delta}] \sim \mathcal{N}(0,1)$ under H_0
- Decision rule: if $Z_n \le c$, accept H_0 (reject drug) if $Z_n > c$, accept H_1 (approve drug)
- How to pick *c*?? Usual choice is 1.96, but why??

Size and Power

	Approve Decision Reject	
Ineffective Drug		
Effective Drug		

- Goal: minimize Type I and II errors by setting the threshold for approval (critical size of treatment effect)
- But there's a trade-off between these errors

Size and Power

Trade-Off Also Exists In Criminal Justice

- "It is better that ten guilty persons escape than that one innocent suffer," W. Blackstone (1765) ("Blackstone ratio," 10:1)
- "It is better 100 guilty Persons should escape than that one innocent Person should suffer," B. Franklin (1785)
- But this has implications for the amount of crime that may occur (and criminals on the loose)

Trade-Off Between Size and Power

Weak Treatment Effect ⇒ Lower Power

More Data Increases Power, At A Cost

Changing Threshold *c*

- Should all drug candidates be held to the same Type I error?
- Pancreatic cancer vs. toenail fungus
- "Patient values vs. p-values" D. Berry
- Is there a "Blackstone ratio" for clinical trials?
- See Montazerhodjat, Chaudhuri, Sargent, Lo (JAMA Oncology, 2017)

Changing Threshold *c*

Formal Statistical Analysis

Key Parameters

```
\alpha = \text{Type I error}
 \beta = Type II error , 1-\beta = Power
 n = Sample Size for Each Arm
X_i \sim \mathcal{N}(\mu_x, \sigma^2) = Patient i's Response, Control Arm
T_i \sim \mathcal{N}(\mu_t, \sigma^2) = Patient i's Response, Treatment Arm
 \delta = \mu_t - \mu_x = \text{Expected Treatment Effect Size}
\sigma^2 = Variance of Patient Outcome
H_0 = Null Hypothesis, \delta = 0
H_1 = Alternative Hypothesis, \delta = \kappa \sigma > 0
```

Null Hypothesis and Size

• Under null hypothesis H_0 : $\delta = \mu_t - \mu_x = 0$ (no effect):

$$\alpha = \operatorname{Prob}(-c < \hat{\delta} < c) \quad (\alpha\% \text{ Confidence Interval})$$

$$\frac{\alpha}{2} = \operatorname{Prob}(\hat{\delta} > c) = \operatorname{Prob}\left(\frac{\hat{\delta}}{\sqrt{\operatorname{Var}[\hat{\delta}]}} > \frac{c}{\sqrt{\operatorname{Var}[\hat{\delta}]}}\right)$$

$$= \operatorname{Prob}\left(Z > \frac{c}{\sigma\sqrt{2/n}}\right) = 1 - \operatorname{Prob}\left(Z \le \frac{c}{\sigma\sqrt{2/n}}\right)$$

$$\frac{\alpha}{2} = 1 - \Phi\left(\frac{c}{\sigma\sqrt{2/n}}\right) \Rightarrow \frac{c}{\sigma\sqrt{2/n}} = \Phi^{-1}\left(1 - \frac{\alpha}{2}\right) \equiv z_{\alpha/2}$$

Null Hypothesis and Size

• Under null hypothesis H_0 : $\delta = \mu_t - \mu_x = 0$ (no effect):

$$c = \sigma z_{\alpha/2} \sqrt{2/n}$$

- For α = 5%, $z_{\alpha/2}$ = 1.96
- Threshold c decreases with sample size n, and increases with σ and $z_{\alpha/2}$ (does this make sense?)

• Under alternative hypothesis H_1 : $\delta = \mu_t - \mu_x = \kappa \sigma > 0$

$$\beta = \operatorname{Prob}(\hat{\delta} \leq c) \text{ (Type II error)}$$

$$= \operatorname{Prob}\left(\frac{\hat{\delta} - \kappa \sigma}{\sqrt{\operatorname{Var}[\hat{\delta}]}} \leq \frac{c - \kappa \sigma}{\sqrt{\operatorname{Var}[\hat{\delta}]}}\right) = \operatorname{Prob}\left(Z \leq \frac{c - \kappa \sigma}{\sigma \sqrt{2/n}}\right)$$

$$\beta = \Phi\left(\frac{c - \kappa \sigma}{\sigma \sqrt{2/n}}\right) = \Phi\left(\frac{\sigma z_{\alpha/2} \sqrt{2/n} - \kappa \sigma}{\sigma \sqrt{2/n}}\right) = \Phi\left(z_{\alpha/2} - \frac{\kappa}{\sqrt{2/n}}\right)$$

$$\Phi^{-1}(\beta) = z_{\alpha/2} - \frac{\kappa}{\sqrt{2/n}} \Rightarrow z_{\beta} = z_{\alpha/2} - \frac{\kappa}{\sqrt{2/n}}$$

• Under alternative hypothesis H_1 : $\delta = \mu_t - \mu_x = \kappa \sigma > 0$

$$n = 2\left(\frac{z_{\alpha/2} - z_{\beta}}{\kappa}\right)^2$$

- Sample size n decreases with κ , increases with power $(1-\beta)$
- How should we choose size and power?
- Suppose $\alpha = 5\%$ ($z_{\alpha/2} = 1.96$) and $\beta = 20\%$ (8:1 ratio)

So How Big Is Your κ ?

More Later:

- How does financing affect these decisions?
- Biotech vs. pharma?
- Should we consider different values of α ?

Review of Clinical Trial Statistical Analysis

Consider Drug That Has Quantifiable Range of Impact

$$T_i \stackrel{\text{IID}}{\sim} \mathcal{N}(\mu_t, \sigma^2) , X_i \stackrel{\text{IID}}{\sim} \mathcal{N}(\mu_x, \sigma^2) , i = 1, \dots, n$$

- Null hypothesis H_0 : $\delta = \mu_t \mu_x = 0$ (no effect)
- Alternative hypothesis H_1 : $\delta > 0$ (positive effect)
- How to decide between H₀ and H₁?

$$\hat{\delta} \equiv \hat{\mu}_t - \hat{\mu}_x = \frac{1}{n} \sum_{i=1}^n T_i - \frac{1}{n} \sum_{i=1}^n X_i$$

Is this difference statistically significant?

Size and Power

	Approve Decision Reject	
Ineffective Drug	Type I Error (False Positive), α	Correct
Effective Drug	Correct	Type II Error (False Negative), $oldsymbol{eta}$

- Goal: minimize Type I and II errors by setting the threshold for approval (critical size of treatment effect)
- But there's a trade-off between these errors

Trade-Off Between Size and Power

Lecture 7

Slide 24

Key Parameters

```
\alpha = \text{Type I error}
 \beta = Type II error , 1-\beta = Power
 n = Sample Size for Each Arm
X_i \sim \mathcal{N}(\mu_x, \sigma^2) = Patient i's Response, Control Arm
T_i \sim \mathcal{N}(\mu_t, \sigma^2) = Patient i's Response, Treatment Arm
 \delta = \mu_t - \mu_x = \text{Expected Treatment Effect Size}
\sigma^2 = Variance of Patient Outcome
H_0 = Null Hypothesis, \delta = 0
H_1 = Alternative Hypothesis, \delta = \kappa \sigma > 0
```

Null Hypothesis and Size

• Under null hypothesis H_0 : $\delta = \mu_t - \mu_x = 0$ (no effect):

$$\alpha = \operatorname{Prob}(-c < \hat{\delta} < c) \quad (\alpha\% \text{ Confidence Interval})$$

$$\frac{\alpha}{2} = \operatorname{Prob}(\hat{\delta} > c) = \operatorname{Prob}\left(\frac{\hat{\delta}}{\sqrt{\operatorname{Var}[\hat{\delta}]}} > \frac{c}{\sqrt{\operatorname{Var}[\hat{\delta}]}}\right)$$

$$= \operatorname{Prob}\left(Z > \frac{c}{\sigma\sqrt{2/n}}\right) = 1 - \operatorname{Prob}\left(Z \le \frac{c}{\sigma\sqrt{2/n}}\right)$$

$$\frac{\alpha}{2} = 1 - \Phi\left(\frac{c}{\sigma\sqrt{2/n}}\right) \Rightarrow \frac{c}{\sigma\sqrt{2/n}} = \Phi^{-1}\left(1 - \frac{\alpha}{2}\right) \equiv z_{\alpha/2}$$

Null Hypothesis and Size

• Under null hypothesis H_0 : $\delta = \mu_t - \mu_x = 0$ (no effect):

$$c = \sigma z_{\alpha/2} \sqrt{2/n}$$

- For α = 5%, $z_{\alpha/2}$ = 1.96
- Threshold c decreases with sample size n, and increases with σ and $z_{\alpha/2}$ (does this make sense?)

• Under alternative hypothesis H_1 : $\delta = \mu_t - \mu_x = \kappa \sigma > 0$

$$\beta = \operatorname{Prob}(\hat{\delta} \leq c) \text{ (Type II error)}$$

$$= \operatorname{Prob}\left(\frac{\hat{\delta} - \kappa \sigma}{\sqrt{\operatorname{Var}[\hat{\delta}]}} \leq \frac{c - \kappa \sigma}{\sqrt{\operatorname{Var}[\hat{\delta}]}}\right) = \operatorname{Prob}\left(Z \leq \frac{c - \kappa \sigma}{\sigma \sqrt{2/n}}\right)$$

$$\beta = \Phi\left(\frac{c - \kappa \sigma}{\sigma \sqrt{2/n}}\right) = \Phi\left(\frac{\sigma z_{\alpha/2} \sqrt{2/n} - \kappa \sigma}{\sigma \sqrt{2/n}}\right) = \Phi\left(z_{\alpha/2} - \frac{\kappa}{\sqrt{2/n}}\right)$$

$$\Phi^{-1}(\beta) = z_{\alpha/2} - \frac{\kappa}{\sqrt{2/n}} \Rightarrow z_{\beta} = z_{\alpha/2} - \frac{\kappa}{\sqrt{2/n}}$$

• Under alternative hypothesis H_1 : $\delta = \mu_t - \mu_x = \kappa \sigma > 0$

$$n = 2\left(\frac{z_{\alpha/2} - z_{\beta}}{\kappa}\right)^2$$

- Sample size n decreases with κ , increases with power $(1-\beta)$
- How should we choose size and power?
- Suppose $\alpha = 5\%$ ($z_{\alpha/2} = 1.96$) and $\beta = 20\%$ (8:1 ratio)

So How Big Is Your κ ?

How does financing affect these decisions?