15.482 Healthcare Finance Spring 2017/62 Andrew W. Lo Unit 4, Part 3: Portfolio Theory

Unit Outline

- Risk & Reward
- The CAPM
- Applications
- Portfolio Theory
- Risk-Adjusted NPV

Portfolio Theory

What Is a Portfolio and Why Is It Useful?

 A portfolio is simply a specific combination of securities, usually defined by portfolio weights that sum to 1:

$$\omega = \{ \omega_1, \omega_2, \dots, \omega_n \}$$

$$\omega_i = \frac{N_i P_i}{N_1 P_1 + \dots + N_n P_n}$$

$$1 = \omega_1 + \omega_2 + \dots + \omega_n$$

- Portfolio weights can sum to 0 (dollar-neutral portfolios), and weights can be positive (long positions) or negative (short positions).
- Assumption: Portfolio weights summarize all relevant information.

Example:

Your investment account of \$100,000 consists of three stocks:
 200 shares of stock A, 1,000 shares of stock B, and 750 shares of stock C. Your portfolio is summarized by the following weights:

Asset	Shares	Price/Share	Dollar Investment	Portfolio Weight
А	200	\$50	\$10,000	10%
В	1,000	\$60	\$60,000	60%
С	750	\$40	\$30,000	30%
Total			\$100,000	100%

Example:

Your broker informs you that you only need to keep \$50,000 in your investment account to support the same portfolio of 200 shares of stock A, 1,000 shares of stock B, and 750 shares of stock C; in other words, you can buy these stocks on margin. You withdraw \$50,000 to use for other purposes, leaving \$50,000 in the account. Your portfolio is summarized by the following weights:

Asset	Shares	Price/Share	Dollar Investment	Portfolio Weight
A	200	\$50	\$10,000	20%
В	1,000	\$60	\$60,000	120%
С	750	\$40	\$30,000	60%
Riskless Bond	-\$50,000	\$1	-\$50,000	-100%
Total			\$50,000	100%

Why Not Pick The Best Asset Instead of Forming a Portfolio?

- We don't know which asset is best!
- Portfolios provide diversification, reducing unnecessary risks.
- Portfolios can enhance performance by focusing bets.
- Portfolios can customize and manage risk/reward trade-offs.

How Do We Construct a "Good" Portfolio?

- What does "good" mean?
- What characteristics do we care about for a given portfolio?
 - Risk and reward
- Investors like higher expected returns
- Investors dislike risk

Assumption:

- Investors like high expected returns E[R] but dislike high volatility SD[R]
- Investors care only about the expected return and volatility of their <u>overall</u> <u>portfolio</u>
 - Not individual stocks in the portfolio
 - Investors are generally assumed to be well-diversified

Key questions: How much does an asset contribute to the risk and return of a portfolio, and how can we choose portfolio weights to optimize the risk/reward characteristics of the overall portfolio?

Consider The "Calculus of Consumption"

- More is preferred to less (non-satiation, free disposal)
- Transitivity: $X \succ Y$ and $Y \succ Z \Rightarrow X \succ Z$
- Diminishing marginal returns
- These axioms have surprisingly specific implications

$$\begin{array}{c|c}
 B & \bullet & \bullet \\
 (A_3, B_3) & (A_2, B_2) \\
 & \bullet & \bullet \\
 & (A_1, B_1) & \bullet & \rho \end{array}$$

Objective:

- Assume investors focus only on the expected return and variance (or standard deviation) of their portfolios: higher expected return is good, higher variance is bad
- Develop a method for constructing optimal portfolios

Standard Deviation of Return $SD[R_p]$

Basic Properties of Mean and Variance For Individual Returns:

Mean =
$$E[R_i]$$
 = μ_i
Variance = $Var[R_i]$ = $E[(R_i - \mu_i)^2]$ = σ_i^2
Standard Deviation = $\sqrt{Var[R_i]}$ = σ_i

Basic Properties of Mean And Variance For Portfolio Returns:

$$R_p = \omega_1 R_1 + \omega_2 R_2 + \dots + \omega_n R_n$$
$$\mathsf{E}[R_p] = \omega_1 \mu_1 + \omega_2 \mu_2 + \dots + \omega_n \mu_n$$
$$= \mu_p \quad (\mathsf{W} \mathsf{eighted Average})$$

Variance Is More Complicated:

$$\operatorname{Var}[R_p] = \operatorname{E}[(R_p - \mu_p)^2]$$
$$= \operatorname{E}\left[\left(\omega_1(R_1 - \mu_1) + \omega_2(R_2 - \mu_2) + \dots + \omega_n(R_n - \mu_n)\right)^2\right]$$

$$E[\omega_i \omega_j (R_i - \mu_i)(R_j - \mu_j)] = \omega_i \omega_j Cov[R_i, R_j]$$

= $\omega_i \omega_j \sigma_{ij}$
= $\omega_i \omega_j \sigma_i \sigma_j \rho_{ij}$

Portfolio variance is the weighted sum of <u>all</u> the variances and covariances:

	$\omega_1(R_1-\mu_1)$	$\omega_2(R_2-\mu_2)$	•••	$\omega_n(R_n-\mu_n)$
$\omega_1(R_1-\mu_1)$	$\omega_1^2 \sigma_1^2$	$\omega_1\omega_2\sigma_{12}$	• • •	$\omega_1\omega_n\sigma_{1n}$
$\omega_2(R_2-\mu_2)$	$\omega_2\omega_1\sigma_{21}$	$\omega_2^2 \sigma_2^2$		$\omega_2 \omega_n \sigma_{2n}$
• • •	i	:	· · .	:
$\omega_n(R_n-\mu_n)$	$\omega_n \omega_1 \sigma_{n1}$	$\omega_n\omega_2\sigma_{n2}$		$\omega_n^2 \sigma_n^2$

- There are *n* variances, and $n^2 n$ covariances
- Positive covariances increase portfolio variance; negative covariances decrease portfolio variance (diversification)

15.482

Portfolio variance is the weighted sum of <u>all</u> the variances and covariances:

$$\operatorname{Var}[R_p] = \operatorname{Var}[\omega'\mathbf{R}] = \omega'\Sigma\omega = \left[\omega_1 \ \omega_2 \ \cdots \ \omega_n \right]$$

- They determine how much de-risking is possible
- The smaller (or more negative) the covariances, the greater the risk reduction

$$\begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_n^2 \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \\ \vdots \\ \omega_n \end{bmatrix}$$

Consider The Special Case of Two Assets:

$$R_{p} = \omega_{a}R_{a} + \omega_{b}R_{b}$$

$$E[R_{p}] = \omega_{a}\mu_{a} + \omega_{b}\mu_{b}$$

$$Var[R_{p}] = \omega_{a}^{2}\sigma_{a}^{2} + \omega_{b}^{2}\sigma_{b}^{2} + 2\omega_{a}\omega_{b}Cov[R_{a}, R_{b}]$$

$$= \omega_{a}^{2}\sigma_{a}^{2} + \omega_{b}^{2}\sigma_{b}^{2} + 2\omega_{a}\omega_{b}\sigma_{a}\sigma_{b}\rho_{ab}$$
Because $\rho_{ab} \equiv \frac{Cov[R_{a}, R_{b}]}{\sigma_{a}\sigma_{b}}$

$$Cov[R_{a}, R_{b}] = \sigma_{a}\sigma_{b}\rho_{ab}$$

As correlation increases, overall portfolio variance increases

Example: From 2011:1–2-16:12, Pfizer had an average monthly return of 1.07% and a SD of 4.36%. McDonald's had an average return of 0.66% and a SD of 3.73%. Their return correlation is 44.0%. How would a portfolio of the two stocks perform?

$$E[R_p] = \omega_{PFE}(0.0107) + \omega_{MCD}(0.0066)$$

$$Var[R_p] = \omega_{PFE}^2 (0.0436)^2 + \omega_{MCD}^2 (0.0373)^2 + 2\omega_{PFE}\omega_{MCD} (0.440)(0.0436)(0.0373)$$

15.482

W _{PFE}	$E[\mathbf{R}_p]$	$Var[R_p]$	$SD[R_p]$		
0%	0.66%	0.002820	5.31%		
10%	0.70%	0.002574	5.07%		
20%	0.74%	0.002395	4.89%		
30%	0.78%	0.002281	4.78%		
40%	0.82%	0.002233	4.73%		
50%	0.86%	0.002251	4.74%		
60%	0.90%	0.002335	4.83%		
70%	0.94%	0.002484	4.98%		
80%	0.99%	0.002699	5.20%		
90%	1.03%	0.002980	5.46%		
100%	1.07%	0.003327	5.77%		

Unit 4 - Part 3

were:

ρ =

ρ =

In General:

$$\mathsf{E}[R_p] = \mu_p = \omega_1 \mu_1 + \cdots + \omega_n \mu_n \qquad = \omega' \mu$$

$$Var[R_p] = \sigma_p^2 = \sum_{i=1}^n \sum_{j=1}^n \omega_i \omega_j Cov[R_i, R_j] = \omega' \Sigma \omega$$

Observations:

- E[R_p] is a weighted average of all the assets' expected returns
- SD[R_P] is smaller if assets' correlations are lower. It is less than a weighted average of the assets' standard deviations (unless perfect correlation)
- The graph of portfolio mean/SD is nonlinear; find the "best" {ω_i} (quadratic optimization)
- If we combine T-Bills with any risky stock, portfolios plot along a straight line

15.482

Mean-Variance Analysis

In General:

Special Case #1:

Consider an equally weighted portfolio:

$$\omega_{i} = \frac{1}{n}, \quad i = 1, \dots, n$$

$$Var[R_{p}] = \sum_{i=1}^{n} \frac{\sigma_{i}^{2}}{n^{2}} + \frac{1}{n^{2}} \sum_{i \neq j} Cov[R_{i}, R_{j}]$$

$$= \frac{1}{n} \times Average \ Variance \ + \ \frac{n-1}{n} \times Average \ Covariance$$

$$\approx Average \ Covariance$$

Managing covariance is more important for large n

Special Case #2: equicorrelated returns

• Consider an equal-weighted portfolio of *n* assets with the same mean μ and variance σ^2 and identical pairwise correlation ρ :

$$\Sigma = \sigma^{2} \begin{bmatrix} 1 & \rho & \cdots & \rho \\ \rho & 1 & \cdots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \cdots & 1 \end{bmatrix} , \quad \rho > -\frac{1}{n-1}$$

Sharpe Ratio = $\frac{\mu}{\sigma} \frac{1}{\sqrt{\rho + (1-\rho)/n}} = SR\theta$

Unit 4 - Part 3

Special Case #2: equicorrelated returns

$$\theta = \frac{1}{\sqrt{\rho + (1-\rho)/n}}$$

- As *n* increases, θ also increases, with a limit of $1/\sqrt{\rho}$ when $\rho \neq 0$
- If ρ = 0 then $\theta = \sqrt{n}$
- Tremendous benefits of uncorrelated assets!

Correlation	Number of Assets n											
ρ	1	2	5	10	20	30	40	50	100	150	200	œ
90%	1.00	1.03	1.04	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
80%	1.00	1.05	1.09	1.10	1.11	1.11	1.11	1.12	1.12	1.12	1.12	1.12
70%	1.00	1.08	1.15	1.17	1.18	1.19	1.19	1.19	1.19	1.19	1.19	1.20
60%	1.00	1.12	1.21	1.25	1.27	1.28	1.28	1.28	1.29	1.29	1.29	1.29
50%	1.00	1.15	1.29	1.35	1.38	1.39	1.40	1.40	1.41	1.41	1.41	1.41
40%	1.00	1.20	1.39	1.47	1.52	1.54	1.55	1.56	1.57	1.57	1.58	1.58
30%	1.00	1.24	1.51	1.64	1.73	1.76	1.77	1.78	1.80	1.81	1.82	1.83
20%	1.00	1.29	1.67	1.89	2.04	2.10	2.13	2.15	2.19	2.21	2.21	2.24
10%	1.00	1.35	1.89	2.29	2.63	2.77	2.86	2.91	3.03	3.07	3.09	3.16
0%	1.00	1.41	2.24	3.16	4.47	5.48	6.32	7.07	10.00	12.25	14.14	00
-10%	1.00	1.49	2.89	10.00								
-20%	1.00	1.58	5.00									
-30%	1.00	1.69										
-40%	1.00	1.83										
-50%	1.00	2.00										
-60%	1.00	2.24										
-70%	1.00	2.58										
-80%	1.00	3.16										
-90%	1.00	4.47										

Risk-Adjusted NPV

Review of NPV Rule

 If companies want to increase their current market value, they should take only projects with positive NPV

NPV =
$$CF_0 + \frac{CF_1}{(1+r)} + \frac{CF_2}{(1+r)^2} + \cdots + \frac{CF_T}{(1+r)^T}$$

- Investment criteria:
 - For a single project, take it only if it is NPV positive
 - For many independent projects, take all those with positive NPV
 - For mutually exclusive projects, take the one with positive and highest NPV
 - For dependent projects, take the combination with the highest overall NPV

Capital Budgeting with Risk

- Risk attitudes will affect your decision
- The Wisdom of Crowds should provide objective valuations that account for risk
- First: compute market valuation
 - Compute expected cash flows
 - Discount by risk-adjusted cost of capital (e.g., CAPM)
- Second: consider unique preferences, constraints, objectives, and types of risk/uncertainty

15.482

Risk-Adjusted NPV (rNPV)

Given a Sequence of Cash Flows {CF₁, CF₂,...,CF_n}:

rNPV =
$$CF_0 + \frac{E[CF_1]}{(1+R)} + \frac{E[CF_2]}{(1+R)^2} + \dots + \frac{E[CF_n]}{(1+R)^n}$$

- Investment criteria:
 - For a single project, take it only if it is rNPV positive
 - For many independent projects, take all those with positive rNPV
 - For mutually exclusive projects, take the one with positive and highest rNPV
 - For dependent projects, take the combination with the highest overall rNPV

15.482