15.482 Healthcare Finance Spring 2017/62 Andrew W. Lo Unit 4, Part 2: The CAPM

Unit Outline

- Risk & Reward
- The CAPM
- Applications
- Portfolio Theory
- Risk-Adjusted NPV

The CAPM

Cost of Capital *R* Is **Your** Cost of Funds

- Your NPV will be computed with respect to R; investors will expect you to earn at least R
- The two challenges of cost of capital R and managing the risk/uncertainty of your revenues and costs (requires domain expertise) are related!
- Risk affects R (usually increasing it), but only certain kinds of risk: diversifiable risk does not affect R
- Only undiversifiable ("systematic") risk affects R; why??

- Payoff of SunGlass Shack: -\$100 if rain, +\$200 if shine
- Suppose chance of rain/shine is 50%
- How much would you pay for SunGlass Shack today?

Cost of Capital
$$R = \frac{\mathsf{E}[\mathsf{Payoff}]}{P_0} = \frac{\$50}{P_0}$$

© 2017 by Andrew W. Lo All Rights Reserved

- Payoff of Umbrellas-R-Us: \$200 if rain, -\$100 if shine
- Suppose chance of rain/shine is 50%
- How much would you pay for Umbrellas-R-Us?

Cost of Capital
$$R = \frac{\mathsf{E}[\mathsf{Payoff}]}{P_0} = \frac{\$50}{P_0}$$

- How much would you pay for half of **both** projects?
- If it rains: profit = 0.5(-\$100) + 0.5(+\$200) = \$50
- If it shines: profit = 0.5(+\$200) + 0.5(-\$100) = \$50

Cost of Capital
$$R = \frac{\text{E}[\text{Payoff}]}{P_0} = \frac{\$50}{P_0}$$

Unit 4 - Part 2

© 2017 by Andrew W. Lo All Rights Reserved

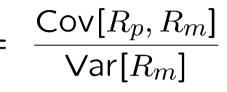
- In the real world, Sunglass Shack and Umbrellas-R-Us don't exist (perfect negative correlation is implausible)
- Diversification does work, but most companies' earnings are positively correlated with each other
- What is the most diversified portfolio of all?
 - The portfolio of all stocks, i.e., the market portfolio
- Can't diversify any better than the market, hence the market's risk is all systematic risk
- Systematic risk requires a "reward", otherwise no one will be willing to be exposed to it Unit 4 - Part 2
 SI

The Capital Asset Pricing Model

William Sharpe (1964):

$$\mathsf{E}[R_p] = R_f + \beta_p \mathsf{E}[R_m] - R_f \beta_p$$

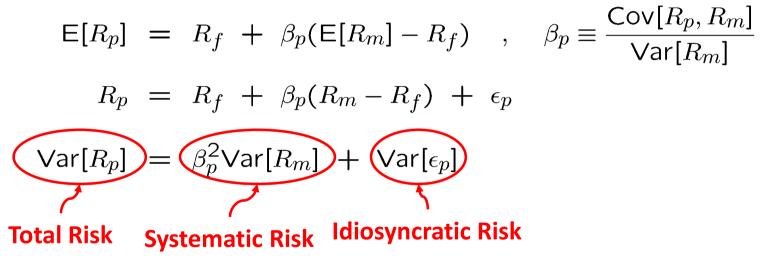
Beta


Implications:

Market Risk Premium ≈ 6.9%

- Correlation matters; diversification
- Benchmarks, performance attribution
- Passive investing
- Indexation and hedging
- Portable alpha overlays
- Risk budgeting
- Framework for fiduciary duties
- Cost of capital estimation and capital budgeting

Unit 4 - Part 2


© 2017 by Andrew W. Lo All Rights Reserved

The Capital Asset Pricing Model

Risk Decomposition:

Only systematic risk contributes to the risk premium

© 2017 by Andrew W. Lo All Rights Reserved

15.482

Applications

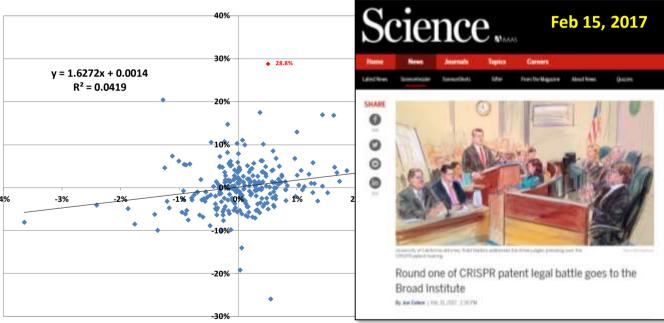
Weighted Average Cost of Capital

		V = E + D
Assets	Liabilities	$R_a = \omega_e R_e + \omega_d R_d$, $\omega_e \equiv \frac{E}{E + D}$
Cash Capital Intangibles	E D	$E[R_a] = \omega_e E[R_e] + \omega_d E[R_d]$
Value	Value	$\frac{\operatorname{Cov}[R_a, R_m]}{\operatorname{Var}[R_m]} = \frac{\omega_e \operatorname{Cov}[R_e, R_m]}{\operatorname{Var}[R_m]} + \frac{\omega_d \operatorname{Cov}[R_d, R_m]}{\operatorname{Var}[R_m]}$
		$eta_a = \omega_e eta_e + \omega_d eta_d$ $eta_e pprox rac{1}{\omega_e} eta_a$ if $eta_d pprox 0$
		© 2017 by Andrew W L o

© 2017 by Andrew W. Lo All Rights Reserved

Example: (betas from finance.yahoo.com 2/17/17)

		САРМ			CAPM
		Cost of			Cost of
Company	Beta	Capital	Company	Beta	Capital
Eli Lilly	0.24	4.44%	Agios	2.33	16.98%
Gilead	1.03	9.18%	Alexion	1.39	11.34%
GSK	1.07	9.42%	Alnylam	3.16	21.96%
1 % 1	0.64	6.84%	Axovant*	1.66	12.96%
Merck	0.96	8.76%	Chimerix	2.30	16.80%
Novartis	0.75	7.50%	Editas*	1.63	12.78%
Pfizer	1.02	9.12%	OncoMed	2.69	19.14%
Sanofi	0.76	7.56%	Regeneron	1.69	13.14%

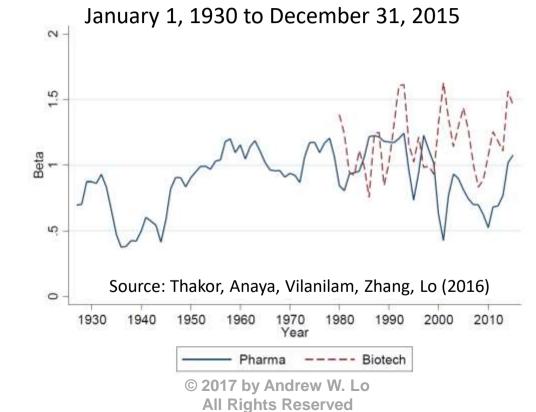

 $R_f = \frac{3\%}{E[R_m]} = \frac{9\%}{2}$

$$\mathsf{E}[R_p] = R_f + \beta_p(\mathsf{E}[R_m] - R_f)$$

© 2017 by Andrew W. Lo All Rights Reserved

Scatterplot of Editas and VOO Daily Returns

4 Feb 2016 to 17 Feb 2017



© 2017 by Andrew W. Lo All Rights Reserved

© 2017 by Andrew W. Lo All Rights Reserved

Comparison of Pharma and Biotech CAPM Betas

